Skip to main content
Invariant Ring Theory in M2
St. Olaf Textbook Edition
Francesca Gandini
Contents
Search Book
close
Search Results:
No results.
Dark Mode
Prev
Up
Next
\(\newcommand{\R}{\mathbb R} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Abstract
Colophon
Acknowledgements
Introduction
1
Representation theory
1.1
Introduction
1.2
Intro To Represenations
1.2.1
Group actions
1.2.2
What is a representation
1.2.3
Characters
1.2.4
Representations of Abelian groups
1.2.5
Applications and further directions
1.3
Further Examples
1.3.1
Representations
1.4
References
2
A concrete introduction to invariant rings
2.1
A concrete introduction to invariant rings
2.1.1
Finite Matrix Groups
2.1.2
Invariant Rings
2.1.3
Reynolds Operator
3
Degree Bounds and Algorithms
3.1
3.1.1
Noether Degree Bound
3.1.2
Hilbert Ideal
3.1.3
Presentations
3.1.4
Graph of Linear Actions
3.1.5
Subspace Arrangement Approach
3.2
Specialized algorithms
3.2.1
Abelian Groups and Weight Matrices
4
Permutation actions
4.1
5
Gröbner Basis
5.1
The Division Algorithm
5.2
Term Ordering
6
Skew Invariant Theory
BibTeX Example
Backmatter
A
Additional Reading
B
Additional Topics
B.1
GitHub Desktop
B.2
VS Code Application
B.3
Using the Terminal
C
Definitions and Notes Quick Ref
Colophon
Colophon
Colophon
This book was authored in PreTeXt.